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Abstract

Models of the main geomagnetic field are generally represented by a
scalar potential 7 expanded in a2 finite number of spherical harmcnics.
In the last decade, such models heve been derived mainly by a recursive
iteration method from the field magnitude F observed by satellites in
low-altitude polar orbits. Very accurate observations of F were used,
but indications exist that the accuracy of models derived from them is
conside.avl s lower., One problem is that F does not always characterize
7 uniquely: Backus hac derived A class of counterexamples in which two
different choices of ¥ correspond to the same F o, It is not clear
vhether such ambiguity can be encountered in deriving ¥y from F in
geomagnetic surveys, but there exists a connection, due to the fact that
the counterexaples of Backus are related to the dipole field, while the
geomagnetic field is dominated by its dipole component. If the models are
recovered with a finite error (i.e. they cannot completely fit the data
and consequently have a small spurious component) this connection allows
the error in certain sequences of hambnic; terms in 7 to be enhanced
vithout unduly large effects .n the fit of F to the model. Computer
simulations heve demonstrated this effect, producing as a result
models which fit the data of F quite closély but yield much poorer
fits to the direction of the magnetic vector. Possible remedies are
discusc.d. An appendix also discusses a particular class of fields -
related to th=2 counterexamples of Backus ~ for which it can happen that
the recursive iteration deriving 7y from F does not converge to the
correct sclution.



INTRODUCTION

In order to derive a general vector Tield in srace, three independert
scalars must be observed at each point - e.z. 3 orthogonal components,
or the Tield's magnitude and two anglez defining its dirsction. For the
main geomagnetic field B - 1.e. the part which originates d=ev inside
the earth - such an cobservation is redundent, since that field Is comple-

tely deTined by a scalar potential 7
B = -9V (1)

The information needed to derive B ray thus be given by a single
scalar furztion of position. In fact, there exists the additional con-
straint that 7 must be harmonic ; this may be viewed as reducing the
"information content" of ¥ to that of a two-dimensional scalar functicn,
since only 2 indices appear in the spherical harmonic expansion of 7 ,
traditionally written as

m=n
7y = a Z Z (a/r)n+1P';;(9){gﬁcosm\f*hﬁsinm‘?} (2)
n=l m=0

( a is the earth's radius). In satellite surveys it is relatively easy to
m2asure accurately one of the three scalars associated with the fi:ld,
namely the magnitude lg‘ , commonly denoted in geomagnetic literature

by the capitzl letter F o Accurate observation of F requires neither
information on the attitude of the observing spacecraft, not observation
cf the flexing of the boom éarrying the magnetometer ; such information is
required for accurate determination of the field's direction, which con-

sequently 1s much harder to perform,

Furthermore, satellites conducting surveys of the field generally do not
vary their altitude by great amounts, so that their observations of F tend
to be distributed more or less over a two-dimensional surface - that of
a sphere concentric with the earth., The preceding qualitative arguments do
however suggest that the amount of information thus gathered may suffice to
determine the field.
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This has led to attempts to trade one scalar for the other, i.e. to
derive y from observations of F (of course, observed data must first
be "cleaned" of Tields of external corigin, du® +his impor<ant point
is not considered here). Zmuda [}2_8] appears o have been the first
to propose this approach and its first major use occured In the analyeis
of Vanguard 3 data by Cain et al. [1962] . The derivation of midels of
the main field from satellite date has generally been based on F

[ Hepprmer, 1963 ; Cain et sl., 1967 ; Cain, 1971 ], in particular the
models derived from observeticn: of 0GO 2,4 and 6 [Cain and Sveeney,
:_LQZQ] « The method used in such work is descrived further on ., Because

F .s easily observed down to intensities of 17y ( =10 =5 gauss ) this

hatr become the method of choice for mapping the geomagnetic field and models
vhich Tit observed F within an r.m.s. deviation of 4 - 7 7 have been
derived by it.

However, two problems arose - one experimental, the other theoretical.
Experimentally, the few observations in which the vector direction of the
field could be compared to the model indicated considerable deviations
[Cohen, 1971 ; Woodman, %] e Also, the results of airborne surveys
indicate (J. Cain, private communication) that field components often
deviate by 100~200 y from the values prescribed by models.

The theoretical difficulty was pointed out by G. Backus [ 1968, 1970]
vho investigated the question of whether F observed on a sphere uniqucly
defines the scaler poteatial ¥ from which it carn be derived. If the
expansion (2) contains a finite number of terms it may be shown [Backus,
}ﬁ] that F and 7 are uniquely related. However, if an infinite
number of terms is allowed, that assertion turns out to be false and
Backus [}9_’{_0] furnished a class of counterexamples in which two quite
distinct infinite expansions, similar tc (2), yield identical forms of
F on the unit sphere r=1 .

This discovery has cast some doubt on the essertion that the gecmag-
netic scalar potential 7 1s uniquely derivable from its corresponding
F . So far, this question has not been resolved.



What the gresent work shows is thal the experimental discropancies
between vector field observations =@ the prediciions of ths model may
have a mathematical origin, related to the -k of Backus. Specifically,
it will be shown that when perfect recovery € 7 1is not possible -
due to finite observational errc s of varic.. origins - and ecach of the
coefficients of (2) comtains a certain error, then this error is enhanced
for certain sequences of terms related to those derived by Backus. The
basic reason Tor the connectlion is that the counterexamples constructed
by Backus are related to the dipole field, while the gecomagnetic field
is known to be dominated by its dipole component. Computer simulations of
the effect and possible remedies will also be described.

TLE COUNTEREXAMPLE OF BACKUS

Backus [ 1970] sought to determine whether it was possible, in
three dimensional space, to find two harmonic functions ¢1 and ¢2 s

vanishing at infinity and differing by more than their algebraic signs,
such that on the unit sphere r =1

2 2
(V)2 = (v (3)

He found it convenient to reformulate the problem in terms of the sum
u and the difference v of these functions, vhich on r =1 have to
satisfy

Vue Yv = 0 (%)
Choosing u to be the dipole potential
u =

7, - cos§ /x° (5)

Backus assumed v tO be an infinite series of the form. (2) and he
then examined the coefficients to see vhether they could be made to



satisfy (4) o Not only did <his “urn out to de possible but a whole class
of such solutions was found to exist. The genersl form of these solutions
is best expressed if cne interchanges the summations of cquation (2)

and writes
oo

v = Z a  cos my Z Gi (a/r)n*.l P::(G) +
m=1 n=m
oo
+ b, sin m'f E Hﬁ (a./r)n"'l P::(e) } (6)
n=m

vhere for sake of definiteness the leading term in each of the summations

over n 1is set ecual to unity
G = K = 1 (7)

Then, provided the series in the iner summations are suitably chosen
(there exist two such summations for each value of m , and they are
actually the same - i.e. H’:: = Gx:;) , equation (4) is satisfied for any
arbitrary choice of the coefficients & and bm « The series over n
are derived by recursion from their leading terms, and since these terms
are fixed by (7), the series are unique. They are described in more
detail in Appendix I and contain nonzero terms only for values of n

and m which sum uvp to an even number,

Strictly speaking, (6) satisfies (4) only if en infinite number of
terms is used. We shall denote this limit of v by a superscript oo

and write

V7g* vve = 0 (8}

If the number of terms in v is finite, (8) no longer holds; how-
ever, the scalar product contributed by such a truncated v (denoted

by & superscript f for "finite") may be small if v® is approached



sufficiently closely. This may be oy 1202y writien as

f
V7g- Vv ole ) (9)
where & {£ 1 is a small parameter. In what follows we indicate for
brevity all small quantities by & ; =2t least 3 distinct Quantities cf

this sort appear, but devoting Lo '2ch of them a svarate notation merely

encumbers the expressions and yields no new results. The magnitude of

the right hand side of (9) depends on the exact form of vl - in

particular, on the number k of terms in the shortest summations over
n which appear in it . If k is sufficiently large, hovwever, the

expression (9) may be made arbitrarily small.

MODETI DERIVATION FROM SCALAR DATA

In the derivations of models of the main geomagnetic field from a set of
observations of F = |¥7] , the value of 7y 1s determined by iterated
linearization, starting from an initial approximation 70 of the scalar
potential. Let 571 be the correction to be added to 70 in order
to obtain the true potential ¥

A S evl (10)

Then

ol F ]

' 2 1 2 2
EV71°V7O {:FQ - (V70)} - 5 € (771) (11)

o)
If the term of order &° 1is neglected and ¥y is expanded in a
b
finite series of form (2) with N unknown coefficients, then (11)
represents one linear equation with N unknowns for each point at

which an obserration of F was made.

Typically the number M of such observations greatly exceeds N . If,

for instance, the series (2) for 71 is truncated pust n = Doy ? then




N = {(a +21)° _ 1 (12)

Typically, Do 10, N =122, while the number of equations (one
for each observation of F) may be of the order of 10,000 . The best-
fitting set of coefficients for Y, Is then derived by least squares
fitting, after which one replaces ‘70 by. 7o+ 2271 ) and repeats
the process, seeking a further correction term 7' . This vrocedure is
continued until the r.m.s. difference between ob;erved values of F
and those obtained from the model no longer shows any improvement.
Various refinements may be included, e.g. dividing each of the equations
(11) by |v70' in order to avoid giving greater weight to observations

in polar regions, where F 1is larger.

Cases are known in which this procedure does not lead to the correct
solution (Appendix II), but in analysis of simulated data from models
representing the geomagnetic Tiel?l this method tends to converge rapidly
- to the “correct" solution, if the derived series is capable of ex-
pressing it, or to a small range of Tinal parameters corresponding to
» "best-fitting series” if the data contain unresolved higher harmo.ics

or other sources of small error.
ERROR ENHANCEMENT

Tre basic egquations used in the iteration are
. _ 1 2
EVr V7. = 3 {Fz ( 97 } (13)

with one such equation being contributed by each observation point.

These equations will lack s unique solution if the set of equations

V7, V7 = 0 (1)
0 1
evalugted for the same points, does have a solution. In that case, given
one solution of (13) , new solutiouns may be obtuined by adding to it
arbitcaly multiples of solutions of (14) .



If all observations were conducted ot the same radial aicizn-n, if
70 were the dipole field and if 71 contained o~n infinite number of
terms, then by (8) thers would nave existed a colstion to (24) and
(13) would not have defined 7, unigun c. Nome of these ~cnditions
holds exactly in the analysis of the geomagneti: £ield (in fact. 7
changes from one iteration to the nexit),.bu* they 2re all avvroximaiely

valid and this, in the presence oi finile errc m2y cause problems,

In this section the finite spread in the radial distance r will
\ T o«

be neglected (its effects are considercd separately later on'. Tt 70
now be separated into a dipole part and a non-dipcle pert

where € ¢! is yet another small quantity.

If an =xact solution for equations (13) AQoes not exist - due to
truncation, experimentel error, unresoclved contributions of external
field sources etc. - then the "best fitting" result for > will consist

1

of the sum of the "true solution" and an "error" ¥ each of which
€ 2

7
t
will be expressed by a finite seriec similar to the one in equation (2) .

One can then write

Elvrg+vr )y, +wy) 2 2{P.(vy?} e

where ¥ will signify "best fitting by the least squares method" (tfor

our particular set of observations).

Yow a finite series y_ = of form {2, can in turn be resolved into
two parts: a sum 7y, Of "Backus terms" similar to those in (6), plus
& sum 7ei of independent harmonics. To perforil such a separation one

first isolates all terms with n = m and includes them in Tep * while



the remaining terms are assigned to 7ei . Bach of the terms in 7eb is
now viewed as the leading cerm of a Backus-type series of the type listed
in squation (6) as” in Appendix I (including the coefficient a  or
bm multiplying such a series), and appropriate higher-order terms are
added to it t¢ form the rest of its series, up to the highest n and

m allowed by the {inite expansion of Yeb 3 ©0 maintain the balance,

the sasme terms thet are added to 7eb are subtracted from 7ei -
Finelly, those expansions in 7, deewed to have (after truncation)

too few terms fur (9) to be valid (with the right hend side small enough)
are transferred from 7eb to 7ei « This will certainly include gll
those Backus series which contain only one term - and perhaps also those

containing two . Equation {16) now may be written

E(Vry+ Wy (Vo ¢+ Vr o+ Vr )

i
Wi

{(#- wr?}

The cor*ributions of the error terms to the left hand side are mainly
due to scaliar prcducts with the dipole term, which overshadows the
non-dipole term. If all coefficients involved in 7eb and 7ei vere
cqual, then the contributicn to the scalar product associated with a
coeiTicient of 7eb will on the average be one order in § smaller
than the contribution associated with one of the cefficients of 7e1 R

since ov equaiion (9) tne former cont: bution gairs an extra order in E .

MAterpatively, 1f the least squares optimization adjusts all uources
of error so that they contribute approximately equally, then the coeffici-

ents of 7eb will be larger by a factor of the order of 5-1' than those

of 7ei , leading to an enhanced error in these tcrms,

A different view of the same effect is gained by writing the basic

relation prior to linearization

~

2
{V Lrg + ECrg+ o +7,+ 781)]} T ¥ (28)
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When the left hand side 1s expanded in orders of € , the 0 tern
is simply (V‘yd)2 and 211 O(€ ) terms of the scelar poteniial contri-
bute to the term of orger £ , except for Yep ? shich dve %o (9) only
contributes at the gf) level . Thus 72 <o Izkereantlv less sencitive
to fluctuations of 7eb s allowing its errors to be relatively laree
without excessive effects on the f£it of -F2 o Intuitively, the Bzcku.
reries may be viewed as modes at which a near-dipole field, derived :n
the manner described here, prefers to fluctuale - Just es a bridge or a
beam tend to oscillate in rertain modes related to their geometrical

properties.

SIMULATION

A test of the preceding argument was performed as follows. A 120-term
éxpansion of 7 (nmax= AL was used tc derive the corresponding values
of F ¢t 144C points on the unit sphere. A program enalyzing these
simulated data by the previously described method was then applied, but
the derived moded contained only 63, 80 or 99 temms (nmax =7, 8 or 9).
Up to 10 itcrations were performed, although the model generally showed
little variation sfter the second iteration; the results ci%ed here
therefore refer to the rit after 2 iterations. As a check a differert
input Tfor 7 was used and similer effects were observed, although they

are not included in the results listed heree.

From the models, the predicted intensity Fm was derived for the
1440 input point and at each point the deviation

was computed. The quauntity 5F/F was then derived, its averagc was

also found aund » representative table of its values at every 3rd point
wag printed out, from which the worst (1.e. largest) value was picked
visually. In addition, the mean angle §) (in radiens) betwcen the model
field and the true Tield was iwcrived:s it is of the same order as the

relative discrepancy :I%/’Bi in one of the components of B . As before,
the worst case was also pi-~ked out visually from a representative table.
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The results are given in Table )l . The relativ: accuracy of the direction
is morz than 10 tim> s worse than that of the megnitude, 2and the worst fii
in direction has an error atoul 10 times larger still, This is an effect
slightly larger than what is founl with models of the geomagneil.c

Tield.

Inspection of the coefficients revealed that the error in the derived
models indeed contained relatively large contributions from the Backus
sequences, For this purpose the differences Agi and Ahx;1 between
the harmonic coefficients of the model potential and those of the poten-

tial used as input were tabulated. The coefficients sequences

m m o
€n > Bpeo v EBpey oo

and

m m m
R e

corresponding to terms which pur’ icipate in a single Backus series alm
invariatly showed the characteristic alternation of signs between cousecu-
tive torms which is typical of any such series., Furthermore, when the
ratio R of any such term to the leading term of its series is compared

to the corresponding ration Rb for the Backus series (Table L) , the

two ratios are roughly similar,

Re~ults from the test for some of these seQuences, as well as for
some terms not belonging to any sequence, are shown in Table 2 . As can
b= scen, some of the sequences grow to relatively large amplitudes
( cogo the gi series for 99 term recovery, the gz series for 80 term
recovery) , others (e.g. the one headed by h: in the 99 term case)
fail to develop.



POSSIYIBLE REMEDTIES

The counterexamples discovered by Backus satisfy equation (4) only on
a single spherical surface. If observations are distributed over a finite
region in three dimensions, the series (6) no longer satisfy (L) over the
entire region of observation and it is thus possible, in principle, to
overcomc the problem described earlier. In i.‘act Backus proved [Be.ckus,
}.ﬂl_l-_] that equatioyp (14) cannot be satisfied over a spherical shell of
any finite Chickness.,

‘:‘

In practical observations such a three dimensionality always exists
due to the finite eccentricity of the orbit of the observing satallite,
For those satellites of the OGO series which were used for geomsgnetic
surveys this eccentricity was rather small: the altitude range (above sea
level) was about 400 to 1500 km for 0G0 2 , 400 to 900 km for OGO 4 and
400 to 1100 km for OGO 6 . Unfor.unately, it appears that in the presence
of finite error such a variation in altitude is only able to reduce some-
what the effects described in this work and will not eliminate thew
altogether,

Suppose observations are ccalined to a spherical shell with

- L
z, tr & r éroi-Sr

If $r/r = O(€)} , then equation (y) - which is the one relevant
here - may still be used, for by Taylor expansion

u(r,9,¥) U(ro,e,") + ofe)
(19)

v(r,0,¥)

1]

v(ro,e,’f) + O0(€e)

If u and v satisfy (9) on the sphere r = Ty, then the above
3

equations show thet they satisfy a r .milar equation over the entire
spherical shell, although the "smallness" of the righi .and =idc is
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somewhat impaired. Thus equations {(17) and {2® :%ill hold end errur
enhancerernt still exists, al*Yough nct as ~trongly z:c in the case of

observations In an infirnitely thirn svherical shall,

As a test, the 99-term recovery of the 120-i~rm model, useé ir
tebles Y and 2 , was repeated with data prints oscilleting cvzr a Tinite
range in radial @istance, comparable o that of ke 0GO orbits. A distinct
improvemert in the angular resolution was obtained (Table 3) but there
still exists a pronounced discrepancy between SF/F and §2 ( the
values of SF/F deteriorate somewhat with increasing §r , probably
becau.e the "error” is an unresclved set of n = 10 terms, the contribution
of which ircreases rapidly for those points at which r is diminished).
If an analysis similar to that of table 2 is performed, it is found
that the Backus series are still enhanced, although the ratios R depart
further from those in table 4 ,

More generally, the addition of some vector data to the data set can
in general help resolve the problem. In such cases it might be useful to
separate the model potential T derived from F into two parts » b
and 7 . , in a similar vay to the resolution of 7, in (16) into its
two parts 7 and 7, in (17). One may then assume 7py to be accu-

eb
rately derived from F end use the added data for deriving Yo alone,

Suppose four example thet one is given as added vector data an accu-
rate location of the dip equator on the surface r = a  On the dip
equator 7/Dr = 0 und therefore, by (6) (noting the equality of the two

summations whe~ (7) is assumed)

= Z/(amcosm\"i-bmsinm‘?);(n‘l) G:P’;(Q)

Ry Jor
/ mi. r=a m=1

(20)

Here the left hand side is known, the coefficients c: are given in
table 4 and the unknowns to be derived are the factors a, cnd b . I
the variation of © is neglected (assuming it to be near 7 /2) the solution
of (20) reduces to the expansinn of a given function of ‘P in a Fourier
series. In practice, with @ kept as variable, the simplest way of deriving
g, and by would be by least squares fittlag of \20).
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AFPENDIX I : TEE BACKUS COUNTEREXAMPLE

The published form of the counterexample of Rackus [ Backus, _".:2@1
normaizes the Legendre functions P’: in the manner preferred by
mathematicians and expresses the depenldence or: the longitude angle P
in terms of complex exponentials, For computer programs it is much
more convenicnt o edont Gaussian normalization, which avoids the
need to calculate sguare roots when deriving either spherical harmonics
or recursion coefficients. I{ is also more corventional in geomagnetic
usage to express the dependence on VY by means of cos m¥Y and sin =P
(as in equation 2) instead of exp (* i m ¥ ). The purpose of this
appendix is to list some properties of the Backus counterexamples when
these are expressed in Gaussian normalizstion with trigonometric
coefficients in ¥ .

The general form of the counterexample is given in equation (6},
and if condition (7) holds, then the two series there are identical -
iee. G;l = H’: « The basic recursion relation for either of these series
is, with Gaussiau normalization,

__ ({meok)(omelbk+l)(Cmelk - 1) m 1.
G:+2k T 7 12k (me2k+1)(m+k) “me2k - 2 (A-1-1)

A similar recursion holds for H’: ; 12 (7) 4s assumed, the results

of this recursion are shown in Tabls 4 . Note that in all terms involved
here the sum of indices is even; terms for which this sum is odd vanish
icdentically.

Table 4 shows that for any given m , the magnitude of the coeffici-
ents increases with increasing lower index n o The r2sulting series
nevertheles.. do converge (~s was shown by Backus), because the normali-
zatinon factors entering P;'; also contribute to the convergencc, For
Gaussian normalization the P‘: for any given m are most conveniently
genersted by a re~ursion rele’ion starting from
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P(8) = sin'® (A-1-2)
P ,,(8) = coso sin’® (A-1-3)
The relation is
P, (8) = cosB Pi(8) + M P (0) (A-1-4)
vhere
A2 = (@emn-m)/[len+ Vn-1] (15

The derivatives are obtained by recursions found from the shove ones

by differentiation, sterting with

dP;/de = mcos® sinm.lﬁ (A-I-6)



APFENDIX II : CASE IN WHICH ITERATION FATILS.

it was noted that in practice the iteration (13) tends to converge
rapidly to an "optimal model" of the field : the purpose of this
apr-ndix 1is to point out a case In which this is not true. The exsmple
given is closely related to the work of Backus [ 1.9_7_(2] and is probably

rather atypical, but it does show that (13) is not universally useful.

. 4% 4,”
let 4»1 and ] be two potentials of the Backus type,

satisfying on r = 1 the conditicn

(ve=)? - (vp= ) - # (A-II-1)

Iet 42 and ¢2 be truncated versions of these series, with all

terms having uppei indices exceeding n omitted, and let

lvs3l = %
(A-11-2)
lve2l - =

By the theorem of Backus proving the uniqueness of the relation

between 9 and F for potentials with a finite number of harmonic

n

terms [Backus, 1%8] , F: uniquely characterizes ¢ N and F°

2
uniquely characterizes 4: . Hovever, a8 n -poo , both Fl: and F:
tend to F and therefore, for large values of n , the difference

between the two becomes rather small.
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This suggests that if the input to the recursion (13) consisted of
F!: or Fz » with n large enough, the recursive iteration might
experience difficulty in telling the two apart - e,g., given Fj s 1t
might start converging to either 4»!: or *: , depending on the

initial choice of 70 o

This is confirmed by computer simulations with F generated by
48-term expansions and the least-squares iteration capable of resolving
an equal number of coefficients. If the program deriving the model of
7 1s presented by such an F: » one of two things is found to occur,
If the initial approximation resembles 4’: more than it resembles

¢: , the recursive iteration will rapidly converge to the correct
coefficients, If, however, the initial approximation is nearer to ’: »
the coefficients will tend to evolve towards those of f: o The itera-
tion then never converges - the search being conducted in the vwrong
range of parameters - and instead the values of the output coefficients

wander within a finite range around those of 4: .

For a recursion deriving 48 term expansions, each resulting ¥
m-y be viewed as defining a point in a 48-dimensional space %8 in
which ea:h coefficient corresponds to one coordinste, and (13) may be
vieveu a8 prescribing a mapping of each point in d’w into another
point there. If the field magnitude used as input is F: (né&6),
the mapping will have a fixed point 4: which maps onto itself,
and in some region surrounding this point the mapping will converge to

én « However, this convergencz evidently does not hold for all of
-2
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°'h8 » since for some initial points the process leads to the neighbor-
hood of the "false solution" #2 . The region from which the iteration
converges to ¢: thus has & boundary, which will represent a limit
cycle - i.e. if the initial point is located on that boundary, the
nmapping causes the resulting set of coefficients to wander along the

boundary without either converging to ¢n or approaching ¢n .
1

2

nonzero n
In one simulation theycoefficients of ¢1 vere

L}
n

0
8y 10 ez 2

si = ~2.8 sze 3375

(for the corresponding +: , the signs of the m =2 terms are

reversed). The coefficients of the initial field were chosen as

Q l
gl = 10 82 = 2
2
2 -2 = 2 .8
&) A gi A

are
For )= 1 the last two coefficients of the initial fieldl\equal to

coefficients of the "false soluticn” §: and the recursion in that
case heads for that solution (the spurious term gl

2
in the process). On the other hand, if ) = 0 the recursion heads

is whittled down

for the "true" solution ¢: « The transition, corresponding to a limit
cycle, occurs near ) = 0,102 @and when that value was used, as many

as 6 1terations were completed before a clear trend became evident.
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CAPTIONS TO TABLES

Table 1

Table 2

Table 3

Table 4

Deviations of a model geomagnetic field,derived by means of
F ,from the "true" field it is supposed to represent, in a com-
puter simulatione. The input field is given by & scalar potential
with 120 coefficients (n = 10), the number of points is 140
end 2 iterations are used, except for one case where the
results of 3 iterations are li.lso shown for comparison. All

.

results are in units of 10
Some of the differences Ag = g(model) - g(true) vhere g
stands for one of the harmonic coefficients gn or h in a
simulated recovery of 7y from F \ﬂiescribed in Table 1 .
Here Rb denotes the ratio between a term in a Backus sequence
having the type and indices indicated on the table and the

leading term of its sequence (these ratios are lis?>d in Table L),
while R is the ratio between corresponding values of Ag .

Results similar to those of Tadle 1 , with a similar input
model and 99-term recovery in 3 iterations, for cases in which
data points are spread out over a spherical shell bounded

by Tt br .

Ratios G‘: +2k/G: derived from the recursion relation A-I-1 ,



No. of terms

63 8c
in recovery 2 iter, 3 iter.
Mean §F/F 26 20 1o 6.4
Worst §F/T 249 207 35.0 3.k
Mean B2 (radians) 300 222 1.8 106.4
vorst 8X(radians) 2497 2139 | 1296 1307

Tatle 1
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6/ Ty 0. 0.C5 0410
Mean §F/F 637 7421 9.17
Worst SF/F 31.h 799 135.2
Mean ) 106.4 8.6 9.7
Worst 3D 1307 1303 1050

Table 3
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